Let <tex2html_verbatim_mark>#math12#<I>S</I> = [<I>s</I><SUB>ij</SUB>] (<tex2html_verbatim_mark>#math13#1≤<I>i</I>, <I>j</I>≤<I>n</I>) be a (0, 1, - 1)-matrix
of order <I>n</I>. Then <I>S</I> is a <#40#><EM>sign-nonsingular matrix</EM><#40#>
(SNS-matrix) provided that each real matrix with the same
sign pattern as <I>S</I> is nonsingular. There has been
considerable recent interest in constructing and
characterizing SNS-matrices [#bs#<tex2html_cite_mark>#1##<tex2html_cite_mark>#], [#klm#<tex2html_cite_mark>#1##<tex2html_cite_mark>#]. There
has also been interest in strong forms of
sign-nonsingularity [#djd#<tex2html_cite_mark>#1##<tex2html_cite_mark>#]. In this paper we give a new
generalization of SNS-matrices and investigate some of
their basic properties.
<P>
Let <tex2html_verbatim_mark>#math14#<I>S</I> = [<I>s</I><SUB>ij</SUB>] be a (0, 1, - 1)-matrix of order <I>n</I> and
let <tex2html_verbatim_mark>#math15#<I>C</I> = [<I>c</I><SUB>ij</SUB>] be a real matrix of order <I>n</I>. The pair
(<I>S</I>, <I>C</I>) is called a <#46#><EM>matrix pair of order</EM><#46#> <I>n</I>.
Throughout, <tex2html_verbatim_mark>#math16#<I>X</I> = [<I>x</I><SUB>ij</SUB>] denotes a matrix of order <I>n</I>
whose entries are algebraically independent indeterminates
over the real field. Let <I>S</I><TT>o</TT><I>X</I> denote the Hadamard
product (entrywise product) of <I>S</I> and <I>X</I>. We say that the
pair (<I>S</I>, <I>C</I>) is a <#48#><EM>sign-nonsingular matrix pair of
order</EM><#48#> <I>n</I>, abbreviated SNS-<#49#><EM>matrix pair of order</EM><#49#> <I>n</I>,
provided that the matrix <P><tex2html_verbatim_mark>#math17#</P><DIV ALIGN="CENTER">
<I>A</I> = <I>S</I><TT>o</TT><I>X</I> + <I>C</I>
</DIV><P></P> is nonsingular
for all positive real values of the <I>x</I><SUB>ij</SUB>. If <I>C</I> = <I>O</I>
then the pair (<I>S</I>, <I>O</I>) is a SNS-matrix pair if and only if
<I>S</I> is a SNS-matrix. If <I>S</I> = <I>O</I> then the pair (<I>O</I>, <I>C</I>) is a
SNS-matrix pair if and only if <I>C</I> is nonsingular. Thus
SNS-matrix pairs include both nonsingular matrices and